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1. INTRODUCTION

Let B be a Banach space and denote by L(B) the Banach algebra of
all bounded linear operators on B. If A € L(B), then the connection
between the spectral radius |4|, of 4 and the norms of the successive
powers of A is given by the well-known formula

4], = lim |/ 4"].

This formula is, in fact, nothing more than the statement that the radius
of convergence of the power series E + 14 + 4242 -+ - - - coincides with
the reciprocal of the spectral radius of 4.

In particular, the series E + A + A% + - -+ will be convergent if and
only if |[4|, < 1 and this is equivalent to the requirement that [4"| <1
for some 7. Hence if |[4]| = 1 and {4|, < 1 there is some power of 4 which
will be << 1. It is thus natural to ask how far one has to go in order to
find a power |4’| < 1 and, furthermore, if these exponents have a common
bound. More precisely, let us denote by ¥ the set of all operators 4 with
|4| < 1and |4|, < 1. Foreach 4 €%, let us denote by ¢(4) the smallest
exponent » for which |4”| < 1. Is there a common bound for the function
e(A) on €? This leads to the following definition.

1. Let B be a finite dimensional Banach space. The number q is said
to be the critical exponent of the space B if the following two conditions are
satisfied:
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(1) if A€ L(B) and |4| = |4 =1, then 4|, =1;
(2) there exists a T € L(B) such that

7= |T""Y =1 and |T|,<L.

The problem of the existence of the critical exponént was first intro-

duced and solved by ]J. Marik and the present author [1] for the #-dimen-
sional space with norm |x| = max|x;|. The critical exponent turns out
to be 2 — # 4 1. Later, the present author [3] showed that the critical
exponent of the n-dimensional Euclidean space is equal to #. Since the
critical exponent of a space B and of its adjoint B’ are clearly equal, the
critical exponent of the #-dimensional space with norm |x| = X |x,]| is
the same as that of the first space. All these spaces belong to the class
of Hélder spaces of type /,, which may be described as follows.
Given any natural number » and any number p such that1 < p < oo,
we shall denote by B, , the (real or complex) #-dimensional vector space,
the norm of the vector ¥ = (x,,..., x,) being defined by the formula

| = (2 |=)"

Of course, this reduces to |x| = max|x,| if p = oo.
If we agree to write ¢g(B) for the critical exponent of B, provided it is
finite, the results mentioned above may be reformulated as follows:

q(Bn, oo) = q(Bn,l) = n2 —n + l;
q(Bn,2) =n.

The existence of the critical exponent for finite dimensional Z, spaces,
p different from 1, 2, and oo, is still an open problem. For certain particular
values of p, its existence has been announced by M. Perles [2]; however,
the bounds that he has been able to give are very large.

The failure of the attempts to compute the critical exponent of ,
spaces is largely due to the fact that, in a certain sense, the definition of
the critical exponent is based on a qualitative statement: if |4| =1
and [4?| =1 then the spectral radius |4|, = 1. It is the purpose of the
present note to point out that the negative restatement of the definition
of the critical exponent can very easily be given a quantitative character;
this leads to many interesting problems, some of which might be of interest
for immediate applications in numerical analysis.
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We begin by defining, for each finite dimensional Banach space B,
a series of constants which describes the behavior of the norms of the
successive powers of linear operators in B.

2. Givena chach space B, a ni.rber 0 < p << 1, and a natural number
r we shall denote by C(B, p, 7) the number

C(B, p,7) =sup{|4’|; AcL(B). |A| <1, |A|, < p}.

Clearly 0 < C(B, p,7) = 1 for any Banach space B, any 0 < p < 1, and
any r. Furthermore, C(B,p,7v + 1) < C(B, p, 7).

Let us first clear up the connection of these constants with the critical
exponent,

The following lemma is based on the continuity of the spectrum as
a function of the operator 4.

3. Let B be a finite dimensional Banach space and let q be a natural
number. Then the following two statements are equivalent:

(1) ¢ = q(B), the critical exponent of B;
(2) C(B,p,q) <1 for each 0 < p < 1.

Proof. Suppose first that (2) is satisfied and that 4 is a linear operator
on B such that |[4| = 1 and |49| = 1. Suppose that |[4|, < 1. It follows
from the definition of our constants C(B, p, ¢) that

1= |47 <C(B, |4, 9) <1,

which is a contradiction.

On the other hand, assume (1) and suppose that C(B, p, gq) = 1 for
some p < 1. It follows that there exists a sequence 4, € L(B) such that
|4, =<1, |4,], = p and lim|4,7| = 1. The unit sphere in L(B) being
compact, there exists an infinite set R of real numbers such that the
subsequence A,, # € R, converges to some operator 4, Since |[4,| =1
and |4,|, < p for each #, it follows that |4y < 1 and [4,|, < p, the second
inequality being a consequence of the continuity of the spectrum as a
function of the operator. At the same time 4| = lim, 4|4, = 1.
Hence |4,] = |44'| = 1and |4,|, < p < 1, so that ¢ = ¢(B) is impossible.

It is the purpose of the present note to compute the constants
C(B,,s p, ) for n-dimensional Hilbert space. We propose to do so by
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constructing, for each p < 1, a certain operator A(p) with [A(p)] = 1,
|4(p)|, = p, and

|A(p)"] = max{]d®; 4| 1, |4, < .

There is llttle doubt that, once the result is known, shorter ways of obtam-
ing C(B” 2 P, 1) will be devised; nevertheless we feel that the present
approach is of interest inasmuch as it provides additional information
about the behavior of iterates of operators.

2. NOTATION AND PRELIMINARIES

The algebra of all complex-valued matrices of type (#, #) will be denoted
by A,

Let E be an n-dimensional Hilbert space with scalar product (x, y)
and norm |x|.

If B is a sequence of n vectors by, ..., b, in E, we shall denote by G(B)
or G(b,,...,b,) the Gram matrix of B. The elements g, of G(B) are
defined as g;, = (g;, &) for 1 <4, k< n.

If W is a matrix of type (#, #) with elements w),,, we can form another
sequence of vectors ¢; = X,w;b,. It is easy to verify that

Gley ..., c) = WGb,, ..., b)W*.

The matrix G(B) is always positive semidefinite; further, G(B) is
positive definite if and only if B is a basis; in other words, if and only
if the vectors b,,..., b, are linearly- independeni.

If B is a basis of E and if x € E is given, we shall denote by M(x; B)
the (row) vector of the coordinates of x with respect to the basis B so that
M(x; B) = (§,, ..., ,) is equivalent to x = &b, + -+ + §,b,.

The algebra of all linear operators on E will be denoted by L(E).
Now let U and V be two bases of E consisting respectively of the vectors
#,...,4, and v,...,v,. 1f A€ L(E), the matrix of 4 in the bases U
and V will be denoted by M (4 ; U, V). Itsith row is taken to be M(Au;; V)
so that

A'ui == 2 'm,-k'vk.
k
Using tbis notation, we obtain, for each x € E,

M(Ax; V)= M(x; UM(4; U, V).

Lincar Algebra and Its Applications 1, 245—260 (1968)
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If U, V, W are three bases of E and A4, BeL(E), then
MAB; U W)y=M(B;U,VM(A;V,W).

- We shall frequently be using the following lemma:

4. Lt Ac L(E)andlet U, V be two bases of E. Denote by M the matrix
M(A; U, V). Then |A| < 4 is equivalent to

MG(V)M* < A2G(U).
Proof. Let xeE be given, let y = Ax, and put p = M(x; U),
g =M(y; V). Clearly
%2 = | 2 pau|® = pG(U)p*.
Since ¢ = pM, we have
|y[? = | 2 g,|* = ¢G(V)g* = pMG(V)M*p*.
The inequality |y|? < A2%|x|2 for each x is thus equivalent to the inequality

PMG(V)M*p* < pG(U)p*
for each p.
It is not difficult to see that L(E) itself is a Hilbert space under the

scalar product (4, T) = tr T*4. Hence every linear functional f on
L(E) may be obtained in the form

/(4) = tr(W*4)

for a suitable W e L(E). In particular, for fixed x and y, the expression
(Ax, y) is a linear functional on L(E). It is not difficult to see that

(dx,y) = (4, T),

where T is the one-dimensional operator defined by Tu = (u, x)y.

3. THE MAXIMUM PROBLEM FOR OPERATORS SATISFYING A GIVEN CAYLEY-
HAMILTON EQUATION

In the present section we intend to solve the maximum problem for
the class of all operators which satisfy a given equation of the Cayley-
- Hamilton type.
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Suppose we are given # complex numbers ay, ..., a, such that all
roots of the equation %" = a; + &% + -+ + 2" ~! are < 1inabsolute
value. To simplify the notation, we shall write simply a for the vector
‘a=(%,...,a,). We intend to investigate the class &/ of all operators

A eL(E) such that |[4| =1 and ‘ '

A" =a1+a244 + AR d”An~1.

Clearly this polynomial identity is satisfied if and only if the minimal
polynomial of A is a divisor of 4" — (&, 4+ ax + ++ + a,x" ).

It will be useful to establish a connection of our class &7 with a :lass
of matrices 2, defined as follows. We denote by 7' the matrix

o1 ¢ - O
o o0 1 --- 0

o 0 0 - 1
% % &3 T X,
and observe that the characteristic polynomial of T is A" — (ot; + w4 +
o+ a,A"7%). We take & to be the class of all (hermitian) symmetric
matrices Z €.#, which satisfy TZT* < Z and z; = 1.

In the following proposition we shall learn how to associate, with

each vector z€ E with [z| =1, a certain mapping g which establishes
a connection between &/ and Z:

5. Let zeE be a given vector with |z| = 1. Let g be the napping of
L(E) into A, which assigns to every S € L(E) the matrix

&(S) =Gz, Sz,S%,...,5" 1.
Then g(f) =
Proof. Let Aesf. For i=1,2,...,n define z;, as A* "'z so that

g(4) =G(z, ..., 2,). Consider now the vectors w; defined by the relation
w; = >4z, so that

Tg(A)T* = TG(z, . .., 2,)T* = Glw,, ..., w,).

At the same time, A being a contraction, we have G(4z, ..., 4z,) =
G(z,...,2,) by Lemma 4. If we show that Az, = w,, we shall have,
combining this with the above equation, Tg(4)T* < g(4). Since (2, z;) =
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(2, z) = 1, this will show that g(4)e Z. To show that Az, = w, take
first the case ¢+ <#. Clearly w; =z ,; at the same time Az, =z, | us
well, so that 4z, = w,. If i = n, we have w, = a2z, + *** + a,2,. Now
A" = oE + agd + -+ + a,A” 7!, whence A"z = ayz + apdz + -+
0, A" 1z = oz + 02y + -+ + a2, = w,. It follows that w, = A"z =
A(A""'2) = Az, and the proof is complete.

On the other hand let Z € Z. Since TZT* < Z it follows by induction
that T7Z7T*" < Z. We note first that the characteristic polynomial of
the matrix T'is »” = o; + a,% + +* + a,2" "' so that the spectral radius
of T is less than one. It follows that lim 77 = 0 so that, passing to the
limit, we obtain 0 < Z. It follows that there exist vectors z,...,2,€ E
such that Z = G(z, 25, .. ., 2,). Since z;; = 1, the first vector z, has norm
1 so that, taking a suitable unitary transformation, we may assume z, = z.
Define now vectors w,, ..., w, as follows:

w,=2,, for 1=Zi<n;
W, =042+ + x,2,
Let us show now that, for each &,,..., &, the inequality
gy + o+ G, P < &z + 0+ EaR
is satisfied. To see that denote by # the row vector (§,..., &,). Since

w; = D, bu# we have, since TZT* < Z,

| > &aw,|? —(Z.’Ew‘, > Ew )_uG Wy, .-, W)U
=uTGz, ..., 2,)T*u* = uTZT*u* < uZu* = | &£z,

so that the inequality is established. In particular, it follows from this
inequality thac a relation of the form ¥, £z, = 0 implies > &w; = 0.
Accordingly there exists on the subspace E, generated by z,...,z,
linear operator A, which takes z; into w;. Let us extend 4, tc an operator
A on the whole of E by putting 4 = 0 on E;t. Let us show first that
A is a contraction. If x€ E is given, it may be expressed in the form

x=§121+“-+§,,z,,+y

with y € Eyt so that Ax = &uw, + - -+ + &w,. By the inequality above,
we have

Ax2= |3 w2 < | X EaP = | 2 8P + P = AP

Linear Algebra and Its Applications 1, 245~ 260 (1968)
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The next step consists in showing that z, = 4'~ !z for i =1,2,..., n.
The operator A has been defmed so as to have Az =wfori=1,2,...,n
I < n, we have w; = z +1 80 thaf Az, =z 4, from w}uch tognther thh?'
=1z, the equations z; = A~z follow easxly Thls shows already that |
g(4) = Z. Since we know already that A is a contraction we shall have
Ae d:f we show that A" (@ +apd + -+ + a,4" ") = 0. First of all,

A" = A(A”"‘z) =Az, =w, = a2+ + @z,
= D ad ",
1

whence (4" — Ptad* " Nz=0. If r, 1 <7<, is given, we have
( ZaA’ ) ( zaA"' )A""z

=A’"1(A” — Zu,-Ai‘l)z =0;
1

since 4 = 0 on E,*, we conclude that 4" — >} a;4' "' = 0. The proof
is complete.

Now we are ready to attack the maximum problem.

Let A€o/ and let ze E. Define again z,= A "'z for 1 <4 < u.
Let m = n. Since A€o, we have A" =&, + agd ++++ + &, 4" ! 30
that 4"z = 3 a2 Since Az; = Y 4,2, we have A™ "z, = > 1~ "z,
where £ are the elements of the matrix T”. Hence A™z = A™ ~"A"z =
A" = > oy Tz = D g = 7 1z 50 that

2| = (2 Bz 2 Bkzk) = Z 'Gjlék(zj' z),

where we have put g; = £~ "1, If we denote by f,, the linear functional
on .#, defined by £, (W) = >, w,B,8, we may write

|47z = f£,,(g(4)),

g being the transformation defined in the preceding section. It follows
that max|4"z|? for A € &/ equals the maximum of f,, on the set &. The
last set being compact and convex, the maximum of /,, will be attained
at an extreme point of Z.

Linear Algebra and Its Applications 1, 245—260 (1968)
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Consider now the cone 7 of all symmetric matrices Z such that
TZT*=Z. We have seen already that TZ7* < Z implies Z 22 0 so
that 7 is a subcone of the cone & of all symmetric positive semidefinite
matrices. In order to obtain the extreme rays of 7 let us establish a
linear isomorphism between 7 and 2. 1fZ € 7, denote by p(Z) the matrix
pZ) =Z — TZT*. Clearly p is a linear mapping of J into #. Now
p(Z) = 0 means Z = TZT* and, by iteration, Z = T'ZT*"; the right-
hand side, however, tends to z=ro so that p(Z) = 0 implies Z = 0. Given
Pe®, define Z as

Z=P+4 TPT* L 12pT*> 4 ...

so that ZeZ and Z = P + TZT*. Hence p(Z) = P and the mapping
p is thus seen to be one-to-one and onto. It follows that the extreme

rays of 7 are generated by matrices of the form p-!(P) where P are
generators of extreme rays of 2. It follows that

max|4”z|? = max f, (p~1(P)),

where P runs over the set of all matrices of the form p,, = p,p, such that
the matrix Z = p~1(P) has z, == 1.

Let us now introduce the following notation: We denote by ¢, the
linear functional on .# defined as follows. Given a matrix M the value
gi(M) = my;. Now our functional /(W) may also be expressed as

"’l.,rm(’rm - +IW]“"‘ n-—-n -.;..1).

We shall show later that #]) = &,** =Y for each 7 and i. From these
equations it follows that

G T" " HIWT*" =4 — g (T"WT*™).

In particular, if W is of the form w, = p,p, the functional ¢, (T"W1T™*')
assumes an especially simple form. In fact,

‘I11(T'W~T*') = 2 tmﬁ Pkt*m

=2 HipEMD: = | Z tmd*
Take now Z = p~1(P), where P is of the form p,, = p;p,. It follows that

ulZ) = qu(P) + qu(TPT*) + qy(T2PT*%) +- -+, ‘

Linear Algebra and Its Applications 1, 245 - 260 (1968)
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while
ﬁl(TmZT*m) = gu(T"PI*") + ¢ (T’”“PT*"'“) +

‘,"We mtroduce now an abbrevxatlon If p,, e p,, isa glven vector and
P the correqpondmg matnx D = Db, We shall denote by &,(P) the func-
tlonal ‘ '

5(P) = 3 ip,
for r=0,1,2,.... It follows that

gu(2) = {5(P}|* + |&(P)|? +

while

qu(T"ZT*") = |§,(P)[2 + £, 11(P) B+

Consider now the Hilbert space H of all sequences x = (x,, %;, %5, . ..)
such that .-, |%]|? is convergent. In H, let us consider the following
n vectors b; defined as follows:

bi = (b b;, -+ ),

where b, = #£7. It is not difficult to see that these # vectors belong to H.
Indeed, since (TL, < 1, we have the estimate |T7| < A’ for large  and a
suitable 0 < 1< 1. It follows that

(T'w,v)| < Xlu||v] for any u,v
so that any sequence of the type
= (T"n, v), r=012...,
belongs to H. If we denote by x(P) the sequence
2(P) = (5o(P), &,(P), &(P), - - -),

clearly %(P) = pyby + poby + -+ + p,b, (since &(P) = 2, {3, =

D' Pibi,). Let us denote by S the shift operator in H, so that, for x =
(%o %y, %5, ...), we have Sx == (%, %,,...). Our task consists in finding
the maximum of [S™x(P)|2 uncler the condition that |x(P)[2 = 1. However,
if we allow P to vary over all symmetric matrices of rank one, the vectors
x(P) will actually sweep out the subspace of H generated by &;,...,b,.
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Let us denote this subspace by B. It is not difficuit to show that B is
invariant with respect to S. Indeed, it is not difficult to see that Sb; =
b; 1 + «;b,, where we put by = 0. First of all, £{;*" = >, #)¢,., whence

) =t for i=1,

it =80 taf)  for i>1,

so that
by,p 41 =3b,
biyy1="0,_y,+ %b,,.
We have thus shown that sup, _,[4"| = [S"|5, where the norm is to be

computed on the subspace B. Let us show now that the space B coincides
with the space of all solutions of the recursive formula

xr+-n = alxr + %xr +1 + oot + 'xnxr-i-n—l'

Since the fiist coordinates of the vectors b; arc just

1 0 -+ 0
0 1 0
0 0 .... 1

it suffices to show that each of the sequences b; satisfies this recursive
formula. To see that, let us consider the matrix T,

0 0) ... 40
@
1

t(l‘)l) t(lé.’) .o t:,:)
£ £ - 4

(infinite nunber of rows and # columns). We observe that the ith column
of this matrix is identical with the vector b,. Let us show now that this
matrix has the following simple property. Given any r =0,1,...,
consider the # by # matrix consisting of the » consecutive rows of T
starting with £7, £0,. .., #). Then this section of T™ is identical with T".
To prove this, let us show first that, for any » >0 and any ¢ <#

~1
te =t 1,0

Linear Algebra and Its Applications 1, 245—260 (1968)
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Since &7 = z, t,fi. "1 and ¢ < #, the only nonzero term of this sum is

the one with j=¢+1 and ¢ ,,, = 1. Using this reduction formula

several times we obtain, for p < n,
5+P)
tl A - t(lyzf-f),w

; and this proves our statement
‘Now let an 7 be given, 1 <X ¢ < %, and let us prove that

T = ol et e T,
Using the preceding formula the sum on the right-hand side reduces to
alt‘lri) "l'" azt(:-l-l) + %t((+2) + + @, t(r-}-n- 1)
= a, t(') + aqt(f) + %t(r) 40 F a”tst"'_)
- St

Again by the formula above, #;t1 = #;+",

* Tm

Summing up, we can now state the main theorem of this section:

6. Leta,,...,a,becomplex numbers such that all roots of the polynomial
— (&g 4 opx + -+« + a, " ) are less than one in absolute value. Denote
by of the set of all contractio::s on a fixed n-dimensional Hilbert space E
whicl satisfy the equation
An == al "?“ azA + e + OL”A"—I.
For any m = n,

max|4™| == |S”‘|H‘%
Ae/

o A)

where S is the shift operator on l, and H(wy,. .., a,) is the n-dimensional

subspace of 1, consisting of all solutions of the recurrent relation
xr+n=m1xr+a2xr+] + +a +n—1

The space H(y,. .., o,) is invariant with respect to S.
4. AN ESTIMATE

At this point, it is already possibie to give a very simple estimate
which constitutes a considerable strengthening of the original theorem
on the critical exponent of the n-dimensional Hilbert space.
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Denote by H the Hilbert space of all sequences of the form x =
{xo, x1,. ..} with |x| = (3 |%;]?)"%. In this space, consider the orthogonal
projections P and Q such that P 4+ Q = I and

Px={xy, %,...,%,_,,0,0,...}

Further, let F be the n-dimensional Hilbert space of all vectors y =
{Yor - -+ Yu_1} With |y| = (3 |32 If yeF is given, we shall denote
by T(y) the sequence z, z,... such that

YooYy o Yn_v i

satisfies the recurrence relation with coefficients a,,..., a,. Clearly 7T(y)
is an element of H; we shall denote by |T| the norm of T as an operator
from F into H.

We intend to show now that

2 1/2
1S ey ) = (Jﬂ“ ) )

The number on the right-hand side being less than one, this estimate
clearly contains the earlier result that the critical exponent of E is .

To prove the estimate above, take an arbitrary x e H(«,, ..., «,) and
denote by y the vector x,,...,%,_, in F.

Clearly |Qx| = |Ty| and |y| = |Px| so that

|0x2= |Ty2 =< |TEy[* = | TP Px[™
Adding |T|?|Qx|2 to both sides of this inequality, we obtain
(L+ |TP)|Qx < |T|X(|1Px[* + @x|®) = |T|*#[*

Now it suffices to observe that |S”x| = |[Qx| and our inequality is estab-
lished.

3. THE GEWERAL MAXIMUM PROBLEM

Having obtained theorem 6 it is now comparatively easy to compute
C(E, p,n). It suffices to consider all recurrent relations a,...,a, for
which the polynomial x* — («¢; 4 apx +++* + a,x” 1) has all roots < p in
absolute value, take the corresponding space H(a, ..., ,), and find the
maximum of |S"|y,, ... o, for such oy,..., @, The main idea used for
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the solution of this maximum problem consists in the following: Denote
again by b,,..., b, the solutions of the recurrent relations with unit
_initial values and express their coordinates in terms of py,..., p,, the
roots of 1" — (m1 %g¥ + 00+ 2" 7Y the. coordmates b, for r=n
 are obtamed (if the p; are considered as mdetermmates) in the form of
a quotlent of two determinants of Vandermonde type; these quotlents
in their turn, may be expressed as polynomials in p,,..., p,. A closer
inspection of the form of these polynomials suggests the conjecture that
all the coefficients of all polynomials b;,, 7 = 7, are of the same sign (which
depends on ¢ only). In fact, for ¢ = 1, it is not difficult to verify directly
that these coefficients are all equal to one. I am indebted to Professor
V. Knichal, who, at my reqguest, supplied a proof of this conjecture.
This result is stated as Lemrma 7 below. With the aid of this lemma, it
is not difficult to show that the maximum of the norm of S$" is attained
on the space corresponding to the case where all p; are equal to p.
We shall denote, for 1 < ¢ < n, by E; the polynomial

e
E,-(xl,. oay x") == 2 xi'x;‘ e x”
Oéet-él
ey + g+ ---+e”=i

Now let p,,. v p, be given complex numbers. For» =1,2,...,#n, put
a,=(—1)"""E,_, (py--., p,) so that the roots of the equation

-1
2 =0y + ox + -0 + a, 2"
are exactly p,,...,p,. Consider the recursive relation
Xy pn = 0%, 0k, g+ 0 g

For each i, 1 <4 < n, we denote by w,(p,,..., p,) the solution of this
relation with initial conditions

Wilpr -« 5 Pu) = 0; i1, 0sksn—1.

For the explicit expression of the w,, as polynomials in p,, ..., p, the
following result may be proved:

7. For each 1 =1,2,...,n and each r = n,

wir(Pp ce Pﬁ) = iQil(pl’ cc Pn)’
where &, = (— 1)*~* and
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Qirlow, -« -, pu) = 2 Gl s )P e
ej =0
e, =r—itl1

where all c,fe,,...,e,) = 0.

For any p,,..., p, we shall denote by P(p,,..., p,) the linear space
consisting of all solutions of the recursive relation

xr+n"‘o'lx + +°C r4n-1

or, in other words, the linear space spanned by the # vectors
Wi(P1s -« s Pu)s -+ o Wylppse - +» p,). Nowlet 0 < p << 1 be given and suppose
that all |p;| < p. We have seen already that, in this case, P(p,,..., p,)
is a subspace of H. We intend to show that

‘Snlp(p,,...,p,,) = 18"pe.., 0

To prove this, we intend to show that, for each x € P(p,, ..., p,), there
exists a ye P(p, ..., p) such that

|57 1"
I« = Iy

We note first that, all coefficients of the forms Q,, being nonnegative,

‘Qir(Pl’ te Pr)l é Qir(P’ cr P)
Nowputy = D% | |x;_,lew(p, ..., p). It follows that, for0 < r = n—1,
we have |y,| = |x,]. If »r =,

n

|
lxr‘:‘jzxi-—lwir(f’l""’l)r éz l—l”Qir(Pl""’pu)l

i=1

-
=

uM:

'-—thir(p' e P) y:.-—letQu(P’ e )

lI

y@—-lww(p’ sy P) =Y,

We have thus [y,[ = |%,| for0=r=<n—1andy, = |v,| forr = # and
this implies the desired inequality. We have thus proved the following
theorem:

8. Let p<<l. The maximum of |A"| where A is a linear operator on
an n-dimensional Hilbert space subject to the conditions |A| < land |A|, < p
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is attained for the nth power of the shift operator S on the space of all sequences
X9, %y, Xp Which satisfy

wy ; R X

o :?u()P’xv tn=j=0

: e i=o\1/ :
for each v = 0.
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