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1. INTRODUCTION 

Let B be a Banach space and denote by L(B) the Banach algebra of 

all bounded linear operators on B. If A L(B), 

-_. -.. 
IA/, = lim IjjA’l. 

This formula is, in fact, nothing more than the statement that the radius 

of convergence of the power series E + AA + 2542 + l l l coincides with 

the reciprocal of the spectral radius of A. 

In particular, the series E + A + A2 + l l l will be convergent if and 

only if IA I,, < 1 and this is equivalent to the requirement that iA’/ < 1 

for some Y. Hence if IA I = 1 and 14 IO < 1 there is some power of A which 

will be < 1. It is thus natural to ask how far one has to go in order to 

find a power IA’ 1 < 1 and, furthermore, if these exponents have a common 

bound. More precisely, let us denote by % the set of all operators A with 

IA4 1 5 1 and 14 la < 1. For each A E ‘e, let us denote by e(A) the smallest 

exponent r for which lAyI < 1. Is there a common bound for the function 

e(A) on % ? This leads to the following definition. 

1. Let B be a finite dimensional Banach space. The number q is said 
to be the critical exponePzt of the space B if the following two conditions are 
satisfied: 
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(1) if A E L(B) avbd IA 1 = [AQI = 1, then IA Ia = 1; 

(2) there exists a T E L(B) swh that 

ITI = IT”-‘1 = 1 a.nd ITlo< 1. 

The problem of the existence of the critical exponent was first intro- 

duced and solved by J. Ma%k and the present author [1] for the rt-dimen- 
sional space with norm 1x1 = rnaxlx& The critical exponent turns out 
to be ~2 - n + 1. Later, the present author [3] showed that the critical 
exponent of the n-dimensional Euclidean space is equal to n. Since the 
critical exponent of a space B and of its adjoint B’ are clearly equal, the 
critical exponent of the n-dimensional space with norm 1x1 = Cl~~l is 
the same as that of the first space. All these spaces belong to the class 
of Holder spaces of type Z+, which may be described as follows. 

Given any natural number n and any number fi such that 15 ~5 5 00, 
we shall denote by B,,, the (real or complex) n-dimensional vector space, 
the norm of the vector x = (x1, . . . , x,,) being defined by the formula . 

Of course, this reduces to 1x1 = maxlx,l if $ = do. 
If we agree to write q(B) for the critical exponent of B, 

finite, the results mentioned above may be reformulated 

q(B,,,) ==q(B,,,) =n2--+ I; 

Q(B,,) = fin 

provided it is 
as follows : 

The existence of the critical exponent for finite dimensional $ spaces, 
p different from 1,2, and 00, is still an open problem. For certain particular 
values of 9, its existence has been announced by M. Perles [2] ; however, 
the bounds that he has been able to give are very large. 

The failure of the attempts to compute the critical exponent of Zp 
spaces is largely due to the fact that, in a certain sense, the definition of 
the critical exponent is based on a qualitative statement: if IA I = 1 
and j&l = 1 then the spectral radius IAl, = 1. It is the purpose of the 
present note to point out that the negative restatement of the definition 
of the critical exponent can very easily be given a quantitative character; 
this leads to many interesting problems, some of which might be of interest 
for immediate applications in numerical analysis. 
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We begin by defining, for each finite dimensional Banach space B, 

a series of constants which describes the behavior of the norms of the 

successive powers of linear operators in B. 

2. Give% a Banach space B, a vu.v-ber 0 g p < 1, and a natzeral nzcmber 
r we shall devaote by C(B, p, r) the nnzcmber 

Clearly 0 ( C(B, p, Y) 5 1 for any Banach space B, any 0 5 p < 1, and 
any r. Ftirthermore, C(B, p, Y + 1) 5 C( B, p, 7). 

Let us first clear up the connection of these constants with the critical 

exponent. 
The following lemma is based on the continuity of the spectrum as 

a function of the operator A. 

3. Let B be a finite dimensional Banach space and let q be a vtatural 
number. Then the ftlllowing two statements are equivalent: 

(1) q > q(B), the critical exponent of B ; 

(2) C(B, p, q) < 1 for each 0 5 p < 1. 

Proof. Suppose first that (2) is satisfied and that A is a linear operator 

on B such that IAl = 1 and IA41 = 1. Suppose that IA In < 1. It follows 

from the definition of our constants C(B, p, q) that 

1 = lAql 5 C(B, [AI,, q) < 1, 

which is a contradiction. 

On the other hand, assume (1) and suppose that C(B, p, q) = 1 for 

some p < 1. It follows that there exists a sequence A, E L(B) such that 

lA,J 5 1, IA,& s p and limlA,QI = 1. The unit sphere in 1*(B) being 

compact, there exists an infinite set R of real numbers such that the 

subsequen:e A,, n E R, converges to some operator A,. Since IAnI 5 1 

and IA,& s p for each titz, it follows that IA,1 5. 1 and [A& 5 p, the second 

inequality being a consequence of the continuity of the spectrum as a 

function of the operator. At the same time &,“I = lim,,,lA,41 = 1. 

Hence lAoI = I& I = 1 and \A& ( p < 1, so that q > q(B) is impossible. - 
It is the purpose of the present note to compute the constants 

C(B,,, p, n) for n-dimensional Hilbert space. We propose to do so by 
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constructing, for each p < 1, a certain operator A (p) with [A(p) 1 = 1, 

14% = PP and 

There is little doubt that, once the result is known, shorter ways of obtain- 
ing C(B,,,, p, n) will be devised; nevertheless we feel that the present 
approach is of interest inasmuch as it provides additional information 
about the behavior of iterates of operators. 

3. NOTATION AND PRELIMINARIES 

The algebra of all complex-valued matrices of type (n, n) will be denoted 

bY A* 
Let E be an n-dimensional Hilbert space with scalar product (x, y) 

and norm 1x1. 
If B is a sequence of n vectors 4,. . . , b,# in E, we shall denote by G(B) 

or G(b,, . . . , b,,) the Gram matrix of B. The elements gi, of G(B) are 
defined as gi, = (gi, gh) for 1 5 i, k 15 n. - 

If W is a matrix of type (n, n) with elements wiR, we can form another 
sequence of vectors ci = ~kw,~~. It is easy to verify that 

W, , . -9, c,) = WG(bl, . . . , b,)w*. 

The matrix G(R) is always positive semidefinite; further, G(B) is 
positive definite if and only if B is a basis; in other words, if and only 
if the vectors b,, . . . , bfl are linearly independent. 

If B is a basis of E and if x E E is given, we shall denote by M(x; B) 
the (row) vector of the coordinates of x with respect to the basis B so that 
M(x; B) = (El, . . ., &J is equivalent to x = &bl + l l l + &b,,. 

The algebra of all linear operators on E will be denoted by L(E). 
Now let U and Y be two bases of E consisting respectively of the vectors 
%r, . . . , un and v,, . . . , v,. If A E L(E), the matrix of A in the bases U 
and V will be denoted by M(A ; U, V). Its ith row is taken to be M(A2ti; V) 
so that 

Using this notation, we obtain, for each x E E, 

M(Ax; V) = M(x; U)M(A; U, V). 
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If U, V, W are three bases of E and A, B E L(E), then 

M(AB; u, IV) = M(B; u, V)M(A; v, W). 

We shall frequently be using the following lemma: 

4. Lt t A t’ L(E) and let U, V be two bases of E. DeNote by M the matrix 
M(A ; U, V) . Then 1 A 1 5 A, is equivalent to 

MG(V)M* 5 i12G(U). 

Proof. Let x E E be given, let y = rlx, and put @ = M(x; U), 

q= M(y; V). Clearly 

lx21 = 12 pit~i12 = pG(U)p*. 

Since 4 = PM, we have 

jy12 = 12 qpJ2 = qG(V)q* = pMG(V)M*p*. 

The inequality 1~12 5 P/x12 f or each x is thus equivalent to the inequality 

for each p. 

pMG( V)M*p* 5 pG(U)p* 

It is not difficult to see that L(E) itself is a Hilbert space under the 

scalar product (A, T) = tr PA. Hence every linear functional f on 

L(E) may be obtained in the form 

J(A) = tr(W*A) 

for a suitable W E L(E). In particular, for fixed x and y, the expression 

(Ax, y) is a linear functional on L(E). It is not difficult to see that 

(Ax, y) = (A, q 

where T is the one-dimensional operator defined by Tu = (u, x)y. 

3. THE MAXIMURI PROBLEM FOR OPERATORS SATISFYING A GIVEN CAYLEY- 

HAMILTON EQUATION 

In the present section we intend to solve the maximum problem for 

the class of all operators which satisfy a given equation of the Cayley- 

Hamilton type. 
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Suppose we are given PZ complex numbers a,, . . . , a, such that all 
roots of the equation x” = al + a2x + l 9 l + a,+C1 are < 1 in absolute 
value. To simplify the notation, we shall write simply u for the vector 
a- al,...,an). ( We intend to investigate the class & of all operators 
A E L(E) such that IA 15 1 and 

A” =al+a2A +***-;-cr,A”-? 

Clearly this polynomial identity is satisfied if and only if the minimal 
polynomial of ~1 is a divisor of xn - (aI + oc,x + l l l + a,? ^ ‘). 

It will be useful to establish a connectid>n of our class JZJ+ with a class 
of matrices 9, defined as follows. We denote by T the matri \; 

0 1 G l u* 0 
0 0 1 l ** 0 

T- i . . 

0 0 0 A- 1 

al % l l l a, 

+ a,$*- 

1. 

the following proposition we shall how to with 
vector z .E with = 1, certain mapping which establishes 

a connection JZZ and 

Let z E be vector 1x1 = 1. g be mapPing of 
into assips every E L(E) matrix 

g(S) = G(z, S2z, c . , S” ‘2). 

g(d) = 3. 

Let A d. For i I, 2, . . , define % so 

= G(z,, . . p 2,). the We by the relation 
= k tf&zk so that 

Tg(A)T* = . . , T* = . . , w,J. 

At same A being contraction, we have @(Az~, . . . , AZ,) 5 

G(+ . . . p z,J by Lemma 4. If we show that AZ, = wi, we shall have, 
combining this with the above equation, Tg(A) T* 5 g(A). Since (zl, zr) = 
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(z, z) = 1, this will show that g(A) E 2’. To show that Azi = wi take 
first the case i < PZ. Clearly wi = zi +1 ; at the same time Azi = xi _, 1 ;1s 

well, so that Azi = wi. If i = s, we have wtl = alz, + l l * + a,z,. Now 
A” =alE+~A+~**+a,An-‘, whence Anz=a,z+azAz+~~~-]- 
a,An% = a,zz + a$% + l l l + a,z, = w,,. It follows that w,‘ = A? = 
A(A”-‘2) = Ax, and the proof is complete. 

On the other hand let 2’ E 9’. Since TZT* r 2 it follows by induction 
that TyZT+z* < 2. = We note first that the characteristic polynomial of 
the matrix T is x” = al + azx + l l l + a,? -’ so that the spectral radius 

of T is less than one. It follows that lim T’ = 0 so that, passing to the 

limit, we obtain 0 5 2. It follows that there exist vectors zr, . . . , z, E E 
such that 2 = G(z,, zz, . . . , 2,). Since 

wi = xi+1 for =_ l<i<n; 

Let us show now that, for each tl, . . . , &,, the inequality 

is satisfied. To see that 

7vi = c k tikzk, we have, 

z zG?G(2;, . 

denote by zc the row vector (&, . . . , En). Since 

since TZT* ( 2, 

=E 1 
iwi = tiG(70,, . . . , w,,)ti* 

so that the inequality is established. In particular, it follows from this 

inequality that a relation of the form 2 Erzi = 0 implies ‘i;l kiwi = 0. 

Accordingly there exists on the subspace .EO generated by “I~, . . . , “crt a 

linear operator A,, which takes zi into Wi. Let us extend A, to an operator 

A on the whole of E by putting A = 0 on E,-,I. Let us show first that 

A is a contraction. If x E E is given, it may be expressed in the form 

with y E E,l so that Ax = &wl + 9 9 l + &wn. By the inequality abaiae, 

we have 

Linear Algebra and Its _4pplicatimrs 1, 345-m260 (1!%8) 
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The next step consists in showing that z, = Ai -lx for i = 1, 2, . . . , n. 

The operator A has been defined so as to have Az~ = We for i = 1,2, . . . , vz. 

If 2” < H, we have We = z~+~ so that Aa;, = z$+~, from which, together with 

21 = z, the equations zi = A”- % follow easily. This shows already that 

g(A) = Z. Since we know already that A is a contraction we shall have 

A E J# if we show that A” - (a1 + a2A + l l l + tx,,A” - ‘j = 0. First of all, 

A”2 = ,4 (An - ‘2) = Az, = w,l = alzl + l l l + q+z, 

whence (A” - 2’1: aiAd - ‘)z = 0. If r, 1 5 Y s n, is given, we have 

= A Y- 1 A”- 2CCiA’-’ z=o; 
1 

since A = 0 on EO’-, we conclude that A” - 2: aiAi - ’ = 0. The proof 

is complete. 

Now, we are ready to attack the maximum problem. 

Let AE&’ and let ZEE. Define again xi = A’-‘z for 15 i 5 n. 

Let m 2 n. Since A E Ccaz, we have .A” = a1 + a,A + l l l -j- atiAn-’ so 
that A% = c ai+ Since Azj = x tikzk we have .4” - nzi = CR tjr - n)zh, 

where t{$) are the elements of the matrix Tp. Hence A’? = A” -“A? = 
A m - ;: 

z i ag, = c i, k a& - %k = xi, k t,& -- n)Zk = zj t$‘ - n i ‘?q so that 

where we have put /?j = t$ -- n + *I. If we denote by ftn the linear functional 

on A,, defined by /,,J W) =: & w&/&, we may write 

g being the transformation defined in the preceding section. It follows 

that maxfA”z12 for A E d equals the maximum of f, on the set 9’. The 

last set being compact and convex, the maximum of /,* will be attained 

at an extreme point of 3, 

Linear Algebra and Its Applica1ions 1, 345- 260 (1968) 



Consider now the cone .F of all symmetric matrices 2 such that 
TZT”~Z. W h e ave seen already that TZ T* 5 Z .implies % -& 0 so 
that F is a subcone of the cone 9 of all symmetric positive semidefinite 

matrices. In order to obtain the extreme rays of F let us establish a 
linear isomorphism between F and .P. If 2 E .., denote by p(Z) the matris 
#(Z) = 2 - TZT*. Clearly P is a linear mapping of F into 9. Now 

p(Z) = 0 means 2 = TZT* and, by iteration, Z = T’ZT*‘; the right- 
hand side, however, tends to z?ro so that p(Z) = 0 implies Z = 0. Given 
P E 9, define Z as 

2 = p _t TP7’” +._ 1’2~~“2 + . . . , 

so that Z E 9 and 2 = P + TZT*. Hence g(Z) = 1’ and the mapping 
p is thus seen to be one-to-one and onto. It follows that the extreme 
rays of F are generated by matrilces of the form p--l(P) where P arc 

generators of extreme rays of 9. Xt follows that 

maxJA”zj* = max f&+9 r 

where P runs oYer th:: set of all matrices of the form p, = Pi& such that 

the matrix 2 = j+(P) has z, = 1. 

Let us now introduce the following notation: \i\;e denote by Qik the 

linear functional on A defined as follows. Given a matrix M the value 

!lik(W = mik* Now our functional f,#V) may also be expressed as 

We shall show latcl tha.t t$/ = tyi+, - ‘1 for each Y and i. From these 

equations it fo!:ows that 

!l?m( 1”” -n+l~~*“t-n+r 
) z qll( ‘I”‘WT*“‘). 

In particular, if w is of the form wik = fiifik the functional qll( ‘I“CV’1’*‘) 

assumes an especially simple form. In fact, 

qll( TW’T”‘) = x t’;i’&5,&” 
i, k 

--_- 
= 2 tj:)pitypk = 1 x tj~pky. 

i,k k 

Take now 2 = $-l(P), where P is of the form pfk = p$,+. It follows that 

qn(z) = q,(P) + qn(TPT*) + q11(T2PT*2) + l l l t 
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while 

/ qgvT*“) = q#Tr*m) + q*r(F+lPT*“+‘) + l l l . 

We introduce now an abbreviation. If &, . . . , p,, is a given vector and 

P the corresponding matrix, ,Qik = pi&, we shall denote by e,(P) the func- 

tional 

(W) = 2 @pk 
k 

for r =o, 1,2,... . It follzWs that 

41alV) = IW)j2 + IMP) 1 

while 

2+..., 

Consider now’ the Hilbert space H of all sequences x = (q,, x1, x2, . . . ) 

such that cizO 1~~12 is convergent. In H, let us consider the following 

ti vectors bi defined as follows: 

bi =: (bio, bil, . . .), 

where bi, = t$. It is not difficult to see that these ti vectors belong to H. 

Indeed, since 1 TI, < 1, we havIe the estimate ( Tyl 5 A’ for large Y and a 

suitable 0 < A < 1. It follows that 

I( T%, v) ( 5 il”lzdl Iv/ for any 24, v 

so that any seyuence of the type 

s, = (T’ls, ~5)~ Y = 0, 1,2, . . . , 

belongs to H. If we denote by x(P) the sequence 

clearly x(P) = p,b, + p2b2 + l l l + p,,b,, (since &(P) = 2, tl*k)& = 
~Rpkbkr). Let us denote by S the shift operator in H, so that, for x = 

( x0, x1, x2, l l l ), we have SX == (A+ x2, . . . ). Our task consists in finding 
the maximum of IS’%(P) 12 unCler the condition that Ix(P) 1% = 1. However, 
if we allow P to vary over all symmetric matrices of rank one, the vectors 

x(P) will actually sweep out the subspace of H generated by 4, . . . , b,,. 

Linear AIg8bra and Its Applicatims 1, 245-2260 (1908) 
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Let US denote this subspace by B. It is not difficuit to sh~)w that B is 

invariant with respect to S. Indeed, it is not difficult to see that Sbi L==: 

bi_ 1 + a$,, where we put b, = 0. First of all, it+l! = zk t(lYk)tki, whence 

&+ 1) = a& for i= 1, . 

t Y-t-l li = t1*{ l + a& , - for i>l, 

so that 

b l,r+l = %brr,rr 

b i,r+l = , bi - 1 r + uibts,r* 

We have thus shown that supA ,alA”‘I = ISmlB, where the norm is to be 

computed on the subspace B. Let us show now that the space B coincides 

with the space of all solutions of the recu.rsive formula 

x rfn - -- qxy + azxI kl + l ** + q+q+,,_i= 

Since the first coordinates of the vectors bi arc just 

it suffices to show that each of the sequences b, satisfies this recursive 

formula. To see that, let us consider the matrix T”, 

(infinite nunber of rows and rt columns). We observe that the ith column 

of this ma.trix is identical with the vector bi. Let us show now that this 

matrix has the following simple property. Given any r=O,l,..., 

consider the PZ by n matrix consisting of the n consecutive rows of Ta 

starting with t$, t$, . . , , t\$ Then this section of T” is identical with T’. 4 

To prove this, let us show first that, for any r > 0 and any q < N 

t(T) 
!I& 

= p- 1) 
q+l,6* 
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Since 8:) = cit,jtg-"' and q < n, the only nonzero term of this sum is 

the one with j = q + 1 and $q+r = 1. Using this reduction formula 

several times we obtain, for p < n, 

p 4-P) = t(e 
li 1 +P,i’ , 

and this proves our statement. 

Now let an i be given, 3 2; i 5 n, and let us prove that 

Using the preceding formula the sum on the right-hand side reduces to 

Again by the formula above, tjl’i+*) = trim’% 

Summing up, we can now state the main theorem of this section: 

6. Let a,, . . . , a, be com~l~?x numbers such that all roots of the Polynomial 
9 - (a1 + ox + l l l -+ a$ -- ‘) are less thavl one in absolute value. Denote 
by & the set of all contractio xs on a fixed n-dimensional Hilbert space E 
w&h satisfy the equation 

A” = aI -/- u2A + . ” l + u,,A” - ? 

For any m > n, 

where S is the shift operator C.W l2 and H(Q . . . , a,) is the n-dimensional 
subspace of l2 consisting of al! sol&ions of the recurrent relation 

x r+n = $xr -t QX,.i_l + ’ ’ l + a&+,,- 1’ 

The space H(or,, . . . , a,,) is &variant with respect to S. 

At this point, it is already possib:!e to give a very simple estimate 

which constitutes a considerable strengthening of the original theorem 

on the critical exponent of the n-dimensional Hilbert space. 

Linear AIgebva and Its Applicaitons 1, 245 -260 (1968) 
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Denote by H the Hilbert space of all sequences of the form x = 

{ x0, xl,. . .} with 1x1 = (z 1~~1”)~‘~. In th’ is s p ace, consider the orthogonal 
projections P and Q such that P + Q = I and 

Px = {z(p Xl,. . ., xn__l, 0, 0,. . .}. 

Further, let F be the ut-dimensional Hilbert space of all vectors y = 

{Y b , . . . , y,, _ 1) with IyI = ( 2 1~~1~)~‘~. If y E 1; is given, we shall denote 
by T(y) the sequence x0, z,,, . . . such that 

Yo, Yl* . . ., Y ~-&)‘~1” l n 

satisfies the recurrence relation with coefficients bcr, . . . , a,,. Clearly T(y) 
is an element of H; we shall denote by IT/ the norm of T as an operator 
from F into H. 

We intend to show now that 

n 
IS I 5z ITI 

2 l/2 

W%,...tdlfl) - ( 1 __ _----_ 
1 + pJ” l 

’ The number on the right-hand side being less than one, this estimate 
clearly contains the earlier result that the critical exponent of E is n. 

To prove the estimate above, take an arbitrary x E H(a,, . . . , a,,) and 
denote by y the vector x0, . . . , x,_ t in F. 

Clearly [QzI = ITyl and IyI = IPxl 50 that 

IQxi" = [Tyl” ( [Ti21yi2 = 1T/211’~j2. 

Adding lTl2lQ~l2 to both sides of this inequality, we obtain 

(1 + IT;‘) IQxI" 5 lTI”( IPxl" -+- iQxl”> = iT121~i2. 

Now it suffices to observe that IS’%l = IQxl and our inequality is estab- 
lished. 

5. THE GETERAL MAXIPlUM PROBLEM 

Having obtained theorem 6 it is now comparatively easy to compute 
C(E, p, ut). It suffices to consider all recurrent relations al, . . . , a,, for 
which the polynomial X” -- (al + ag + l . l + a,$ - ‘) has all roots ( p in 
absolute value, take the corresponding space H(a,, . . . , a,J, and find the 
maximum of lSnjH(al,, . .,anj for such al,. . . , a,,. The main idea used for 
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the solution of this maximum problem consists in the following: Denote 

again by b,, . . . , b,, the solutions of the recurrent relations with unit 

initial values and express their coordinates in terms of pl,. . . , pn, the 
roots of x” - (aI + %x + l l l + a&‘- I) ; the coordinates bi, for I > B = 
are obtained (if the pi are considered as indeterminates) in the form of 
a quotient of two determinants of Vandermonde type; these quotients, 
in their turn, may be expressed as polynomials in pl,. . . , pfi. A closer 

inspection of the form of these polynomials suggests the conjecture that 
all the coefficients of all polynomials bi,, r 2 N, are of the same sign (which 
depends on i only). In fact, for i = 1, it is not difficult to verify directly 

that these coefficients are all equal to one. I am indebted to Professor 
V. Knichal, who, at my request, supplied a proof of this conjecture. 
This result is stated as Lemma 7 below. With the aid of this lemma, it 
is not difficult to show that the maximum of the norm of S” is attained 
on the space corresponding to the case where all pi are equal to p. 

We shall denote, for 1 5 i 5 s, by Ei the polynomial 

Now let pl,..., pn be given complex numbers. For r = 1,2,. . . , s, put 

a, = (- ~)n-‘~n_,.+l(pl,. . ., p,J so that the roots of the equation 

x” = al + azx + -0. + ar,x”-’ 

are exactly pl, . . . , pa. Consider the recursive relation 

For each i, 1 5 i 5 H, we denote by w&, . . . , p,) the solution of this 
relation with initial conditions 

For the explicit expression of the wiR as polynomials ig pl, . . . , p,, the 
following result may be proved: 

7. Fm each i= 1,2,...,91* and each r&, 

where si = (- ljn-’ and 

Linear Algebra and Its Appificaticms 1, 245- 200 (1968) 
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Qi,rh . . . , p,) = ‘iAel , l l 0, en)& . l 9 p:, 

where all c+(e,, . . . , en) 2 0. 

For any pl,. . ., p,, we shall denote by P(pl,. . . , p,) the linear space 
consisting of all solutions of the recursive relation 

or, in other words, the linear space spanned by the n vectors 

W&J,, . . . , p,), . . . , M&, . . . , p,). Now let 0 < p < 1 be given and suppose 
that all lpi\ s p: We have seen already that, in this case, P(pl, . . . , p,,) 

is a subspace of H. We intend to show that 

n IS I f%Jl,. . .,P#) = ( IsnlP(,,...,,)* 
To prove this, we intend to show that, for each x E P(p,, . . . , pn), there 

exists a y E P(p, . . . , p) such that 

We note first that, all coefficients of the forms Qir being nonnegative, 

Nowputy = Cyzl IXi_1!&iwi(p,. . ., p). Itfollowsthat,forO 5 Y ( n - 1, 
we have Ir,l = IX& If Y > n, 

We have thus IJ+[ = 1~~1 for 0 (= r ( n - 1 andy, > 1~~1 for r 2 n and 

this implies the desired inequality. We have thus proved the following 

theorem : 

8. Let p ( 1. The maximum of [A”[ where A is a linear operator on 
an n-dimensiovzal Hilbert space subject to the conditions 1 A 1 5 1 and IA ia 5 p 
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is attained for the v&h power oj the shift operator S on the space of all seqzcences 
x0, x,, xz which satisfy 
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